
Goals in Crypto

1. Confidentiality : Keeping secret data secret

2. Integrity : Preventing modification
3. Authentication : Preventing frauds
4. Non-repudiation : Preventing denials of messages sent



Symmetric crypto

Plain text : Encryption = Key : Decryptions plain text

Ciphertext Ciphertext

Examples :

- Substitution cipher : Substitute each letter with the corresponding
letter according to SK , a bijective 1-to-1 function

- OTP : k = M = = 10 ,
13"

, Elk,m) = 1 m
, D(k, c) = k@c

-> Has perfect secrecy: The ciphertext reveals no into about the plaintext
↳ No ciphertext only attacks

↳ 1kk IMI

-> Never use same I twice because # = m mr

-> K has to be long for perfect secrecy
- Stream cipher: Same as OTP

,
but K is generated based on seeds

-> Uses PRG ,

- Block cipher : Encrypt data in fixed-size chunks

-> Different mode of operation :

- Electronic codebook (ECB) : Each block is encrypted independently
-> vulnerable to pattern attacks

- Cipher block chaining (CBC) : Each block is XORed with previous block

-> requires init rector (IV)
before encryption

- Counter mode (CTR) : Counter value (counter-nonce) is encrypted
and XORed with plaintext

-> Implementation : Data encryption standard (DES)

message
- initial

> 16 feistel rounds
inverse

&

-

64 bits
permutation

key expansion permutation 64 bits

S key "

Unsafe -> Triple DES (SDES) :

- 3E((kikziks) , block) = E(ke
,D(k2 , Elky ,

block (1)
- backwards compatability : 3DES = DES if ke= kn= k]
- attack requires 2118 time, so it's safe Is 230 but not efficient



- IDES would be enough ,
2111

,
but vulnerable to

Meet-in-the-Middle attacks :

- Elke
, E(kzim)) = c (=) Elk m) = D(k+, c)

- Build lookup tablefor all knik and find match
- Can be done in 263

Trapdoor functions

f: easy
Domain flhard Range
-
fi : easy with trapdoor +



space of output I'

Pseudorandom Generators (PRG) k'1 imagein
X

- 6 : 90
,

132 -> 10
,
134n

- called secure it for any efficient statistical test D /Distinguisher
it holds that IPID(6(s)) = 13 - PID(r) = 131 is negligible.

s = 40.
13 r= 40

.
13

-an unpredictable PRG means that a part of k'gives no into about

the rest

Semantic Security

An advisory cannot derive meaningful information from ciphertexts.
Test : Distinguish between encryptions of two chosen plaintexts.

If the advisory can deduce sensitive information or even the
DK

,
then this is called a chosen plaintext attack ((PA)



Public Key Crypto
Bob PK Bob SK

Alice

Plaintext - Encryption > Decryption - Plaintext

KeyGen(X) = (pk ,
sk)

Enc(pk , m) = c

Dec (sk , m)

Public Key Infrastructure
- Certificate authorities /(A) issues certificates that Alice's PK is

valid .
This creates a single source of truth and single point of

failure
.

- Distributed (As can all issue ,
but may or may not trust each

other

- Web of trust means everyone can issue certs and there is

a chain of trust

Textbook RSA amount of numbers relatively prime

1) Distinct primes p,g : Compute N = pq , P(N) = (p -1)(a -1)
2) Choose et &PIN) such that gad (e

,$(N)) = 1 : Computed = emod P(N)
3) pk = (N

, e) , sk= (N , d)

Enc(pk , m) = me mod N Declsk, c) = c mod N

Finding N is a Ne problem called the factoring problem ,
but not
semantically secure

Extended Euclidean Modular Inversion

ax + by = g(d)a , b) a x = 1 mod m

r = a mod b exists only if ged (a,m)= 1

a = b EE on a x + my = 1

bar Reduce X mod in

stop if r= 0

Chinese Remainder Theorem

X = 1 mod my N=

m1 .

.... Ni Find Ni .Mi1 mod ni

X = ac mod as Ni = Ei X= ai . NiMi mode

wheren are pairwise coprime (gcd(ni , nj) =1)



Security Concepts
IND-CPA : Indistinguishable chosen plaintext attack

-> Test : Can attacker distinguish the ciphertexts of 2 chosen plaintexts
IND-CCA: Indistinguishable chosen ciphertext attack

-> Test: Can attacker distinguish the ciphertexts of 2 chosen plaintexts
with access to decryption algo (except for the 2 cipherters)

Passing the tests requires success probability > 50 %

RSA fails both
.

El Gamal is secure against IND-CPA.

Homomorphism
- (a) + +(b) = f(u+ b) f(a) . f(b) = f(a-b)
RSA and El Gamal are homomorphic :

Elpk , m1) · Elph , ma) = Elpk , mymy

El Gamal

1. Generate description of cyclic group 6 = <g) of order a
2. Choose xe(1 , ..., 4-13 and compute hey
3

. pk = (6 , g , 9 , h) sk = (x)

Enc(pk ,
m) :

1. Pick random re[1, ... . . 9-13 , compute cy =gr
2.Compute c = m . h" -> c = (c , x)

Dec(sk
,
c) :

1
.

k = c x
-X

2
. me c

>
k = (2 . 4

Relies on the discrete log problem :

1. Given handg ,
it is infeasable to computex

2. The shared secret k = modp remains secure



Data Integrity

Confidentiality (i
. e. encryption) does not imply integrity.

The adversary doesn't have to break the cipher to modify
the message.

Cryptographic Hash Functions

Maps arbitrary long inputs into fixed size bit strings. A small

change in input should yield significantly different output.

These functions are one-way , meaning they are easy to

calculate ,
but hard to reverse.

Problem :I: M-T , but 11M/IITII
, so collisions exist :

H(mo) = Alme) mo-my .
If that's not true, then It is a strong hash.

# is collision resistant if there is no efficient algorithm to find
collisions. If that's the case then his a weak hash.

If we take 2" inputs and compute ti = Hlmil E10, 13h , we have a 50% chance

of a collision (similar to birthday paradox).

Diffie-Hellman
Secure way to exchange cryptographic keys.
Public parameters :

-

p : prime
-

9 : generatory cyclic multiplicative group 6

Private params :

- a ,
bt(1...., 9 - 13

Public Keys:

- A = gamod p
- B = gb mod p

Shared key :

- k = B"modp> K = A" mod p
-> Again making use of blog problem => computationally infeasable
-> Also works for 3 users ,

but not more



Message Authentication Code (MAC)

Create a tag to ensure message integrity and authentication.
A MA) is a triple of efficient algorithms : KeyGen, MAC , Verify :

- Keyben (1) -> k : x = security parameter , 1: secret key
- MAC(k

, m) -> +: tag generation
- Verify (k

, mit)> 20
, 13 : deterministic

It has a correctness property if Verify(k, m , MAC (k, m)) = 1.

A MAC must not allow for an existential forgery , meaning an attacker

can't produce a valid message-tag pair (m't') for a new message

m' without knowing k.

Implementation of MAC
- Raw (BC-MAC : FuckxM1 -> M , where M' = 50

,
13

· Message m is split

into blacks of length n.

Co = on -> (i = Fy(m; (i-1) i = 1
, .... + + = 4

M↑o ,m
.F(k, ) F(kil

However
, this is insecure

.
Given a valid (m ,

# pair , the attacker
can choose m' = m 1l (tm) :

FBelk , mil = Fec(k , Fec(k,
m) ( + &m)) = F((k ,

+( + om/)
= Fizc(k ,

m) = +

Thus
, Im H is a valid pair.

This can befixed by encrypting T with another secret key :

F (k2 , (B)-MA(k
,
(M)) . This is called ECBC-MAC

.

- HMAC : S(k ,
m) = H(k@opad 11 H(kipad)11m) , where opad and

ipad are fixed constants used for padding.
It is proven to be secure



Digital Signatures
Alice PK
↓

Alice S1 Sign < Verity -> TIF

A public-key signature scheme is an efficient algo triplet :
- KeyGen(X) -> (pk , sk)
- Sign (sk ,

m) + o

- Verify (pk , m , 0) -> 10
,

13

Textbook RSA Signature :

1. Generate two X-bit primes p and g , Compute N=

pq and P(N).

2
. Choose an integer e EPIN such that godle , P(N) = 1 and

compute d= e" mod PIN)

3
. pk= (N , e) and sk = (N, d)

Sign (sk ,
m) = mdmod N = o

Verify (pk , m , ol = a mod NE m

Correctness : Verify (pk , m , Sign (sk,mll= 1

of = mde mod N

This is again homomorphic : Sign (skim1)· Sign (sk , m2) = memc mod N

= (m1 · m2) <mod N = Sign (me, M2)

This is not secure against existential forgery. We can get
the signature of their product without a key. To solve this,
we can hashm first:

Sign (sk
, H(me))· Sign (sk

,
H(mall = H(m1)dH(ma)d

= (H(me)· Almall
*

# (H(m· mall
&

This is called hash-and-sign and is secure.



Digital Signature Algorithm (DSA)

key Gen (x) -> (pk , sk)
1. Choose a group 6 of order a

with generator g and a

random xe(1 , ... 9-13 and compute X= g*.

2. Specify a hash function H : 50, 13
*
-> Eq

3
.

Set pk = (6 , 9 , g , X) and sk = x

Sign (sk ,
m) -> (R

,
s)

Compute R= lg "modp) mod a and s =

(H(m) + X - R)
mod ar

Verify (pk, m, o

R(gHmI . S . XR . s
mod pl mod a

Digital Signatures vs
.
MACs

Digital Signatures :

- simpler distribution
- only sign once

- publicly verifiable (also transferable !)
- Non-repudiation : Author cannot deny signing it

MACs :

- One key for each recipient
- New MAC for each recipient
- Only receiver can verify
- Author can deny having created a MAC for a message


