Goals in Crypto

- 1. Confidentiality: Keeping secret data secret
- 2. Integrity: Preventing modification
- 3. Authentication: Preventing frauds
- 4. Non-repudiation: Preventing denials of messages sent

Symmetric crypto

Plain text \longrightarrow Encryption \leftarrow Key \longrightarrow Decryption \longrightarrow Plain text

Ciphertext ---- Ciphertext

Examples:

- Substitution cipher: Substitute each letter with the corresponding letter according to SK, a bijective 1-to-1 function
- OTP: $K = M = C = \{0, 1\}^n$, $E(k, m) = k \oplus m$, $D(k, c) = k \oplus c$
 - -> Has perfect secrecy: The ciphertext reveals no info about the plaintext Lo No ciphertext only attacks Lo [K] > [M]
 - → Never use some K twice because c1⊕ c1 = m1⊕ m2
 - -> K has to be long for perfect secrecy
- Stream cipher: Same as OTP, but K is generated based on seeds -> Uses PRG;
- Block cipher: Encrypt data in fixed-size chunks
 - -> Different mode of operation:
 - Electronic codebook (ECB): Each block is encrypted independently -> vulnerable to paffern attacks
 - Cipher block chaining (CBC): Each block is XORed with previous block
 requires init vector (IV)
 before encryption
 - Counter mode (CTR): Counter value (counter + nonce) is encrypted and XORed with plaintext
 - -> Implementation: Data encryption standard (DES)

Vnsafe → Triple DES (3DES): - 3E((k11k21k3), block)= E(k1, D(k21E(k31block))) - backwards compatability: 3DES = DES if k1=k2=k3 - altack requires 2⁴¹³ time, so it's safe (>230) but not efficient

- 2DES would be enough; 2¹¹²; but vuherable to Meet-in-the-Middle attacks:
 E(k1, E(k1, m)) = c <=> E(k1, m) = D(k1, c)
 - Build bokup table for all k, 1, k, and find match
 - Can be done in 263

Trapdoor Functions

Domain f: easy Range fil easy with trapdoor t

Pseudorandom Generators (PAG)

- $\sim 6: \{0,1\}^{L} \rightarrow \{0,1\}^{n} \quad n >> L$
- called secure if for any efficient statistical test D (Distinguisher) it holds that IP[D(G(s)) = 1] - P[D(r) = 1] is negligible. $s = \{0,1\}^{L}$ $r = \{0,1\}^{n}$
- an unpredictable PRG means that a part of k' gives no into about the rest

Semantic Security

An advisory cannot derive meaningful information from ciphertexts. Test: Distinguish between encryptions of two chosen plaintexts.

If the advisory can deduce sensitive information or even the PK, then this is called a chosen plaintext attack (CPA)

Public Key Crypto

Alice Cook PK Plaintext ---> Encryphion Bob SK1 > Decryption ---- Phintert

Key Gen (X) = (pk, sk) Enc (pk,m)=c Dec (sk, m)

Public Key Infrastructure

- Cerlificate authorities (CA) issues certificates that Alice's PK is valid. This creates a single source of truth and single point of failure
- Distributed CAs con all issue, but may or may not trust each other
- Web of trust means everyone con issue certs and there is a chain of trust

camount of numbers relatively prime

- Textbook RSA 1) Divinct primes p_1q : Compute $N = p q + \phi(N) = (p-1)(q-1)$
 - 1) Choose $e \in \mathbb{Z}_{\phi(N)}$ such that $gcd(e,\phi(N)) = 1$: Compute $d = e^{-1} \mod \phi(N)$ 3) pk = (N, e), sk = (N, d)
 - Enc(pk, m) = m^e mod N Dec(sk, c) = c^d mod N
 - Finding N is a NP problem called the factoring problem, but not semantically secur
 - Extended Euclideon Modular Invession ax + by = gcd(a,b) ax=1 mod m exists only if gcd (a,m)=1 r=a mod b EE on ax + my=1 a 🗲 b b←r Reduce x mod m shop if r=0

Chinese Remainder Theorem $x \equiv \alpha_1 \mod \alpha_1$ $N \equiv \alpha_1 \cdot \dots \cdot \alpha_k$ Find $N_i \cdot M_i \equiv 1 \mod \alpha_i$ $x \equiv \alpha_1 \mod \alpha_2$ $N_i \equiv \frac{N_i}{\alpha_i}$ $x \equiv \sum_{i=1}^{k} \alpha_i \cdot N_i \cdot M_i$ mod Nwhere n are pairwise coprime (gcd(n; n;)=1)

Security Concepts

IND-CPA: Indistinguishable chosen plaintest attack

-> Test: Can attacker distinguish the ciphertexts of 2 chosen plaintexts IND-CCA: Indistinguishable chosen ciphertext attack

-> Test: Can altacker distinguish the ciphertexts of 2 chosen plaintexts with access to decryption algo (except for the 2 ciphertexts) Passing the tests requires success prabability > 50% RSA fails both. El Gamal is secure against IND-CP4.

Homomorphism

 $f(a) + f(b) = f(a+b) \quad f(a) \cdot f(b) = f(a+b)$ $BS4 \quad \text{and} \quad El \quad \text{frame}(a+b) \quad \text{frame}(a+b)$ $E(pk, m_1) \cdot E(pk, m_2) = E(pk, m_1 \cdot m_2)$

El Gamal

1. Generate description of cyclic group G = cg > of order q2. Choose $x \in \{1, ..., q-1\}$ and compute $h = g^{\times}$ 3. pk = (G, g, q, h) = sk = (x)Enc (pk, m): 1. Pick random $r \in \{1, ..., q-1\}$, compute $c_q = g^r$ 2. Compute $c_1 = m \cdot h^r \rightarrow c = (c_{11}, c_{2})$ Dec (sk, c): 1. $k = cq^{\times}$ 2. $m^2 c_2 k^{-1} = c_2 \cdot c_1^{\times}$

Relies on the discrete log problem:

1. Given h and g, it is infeasable to compute x

2. The shared secret k= cit mod p remains secure

Data Integrity

(onfidentiality (i.e. encryption) does not imply integrity. The adversary doesn't have to break the cipher to modify the message.

Cryptographic Hash Functions

Maps arbitrary long inputs into fixed size bit strings. A small change in input should yield significantly different output.

These functions are one-way, meaning they are easy to calculate, but hard to reverse.

Problem: H: $M \rightarrow T$; but $||M|| \gg ||T||$, so collisions exist: $H(m_0) = H(m_1) \quad m_0 \neq m_1$. If that's not true, then H is a strong hash. H is collision resistant if there is no efficient algorithm to find collisions. If that's the case then h is a weak hash. If we take $2^{n/2}$ inputs and compute $t_i = H(m_i) \in [0, 1]^n$, we have a SO% chance of a collision (similar to birthday paradox).

Diffie - Hellman

Secure way to exchange cryptographic keys. Public parameters: - p: prime } cyclic multiplicative group 6 - g: generator Privale params: - a, b ∈ {1, ..., q-1} Public keys: - A= g^a mod p - B= g^b mod p - B= g^b mod p - K= B^a mod p <=> K= A^b mod p -> Again making use of Dlog problem => computationally infeasable

-> Also works for 3 users, but not more

Message Authentication Code (MAC)

- Create a tag to ensure message integrity and authentication.
- A MAC is a triple of efficient algorithms : Key Gen, MAC, Verify:
- KeyGen $(\lambda) \rightarrow k$: λ = security parameter, k= secret key
- MAC(k,m) -> t : tag generation
- Verify(k,m,t)→ {0,1}: deterministic
- It has a correctness properly if Verify(k,m, MAC(k,m))=1.

A MAC must not allow for an existential forgery, meaning an attacker can't produce a valid message-tag pair (m', t') for a new message m' without knowing k.

Implementation of MAC

However, this is insecure. Given a valid (m, t) pair, the altacker can choose m'= m ll (t⊕m): Fcoc(k, m') = Fcoc(k, Fcoc(k,m) ● (t⊕m)) = Fcoc(k, t⊕(t⊕m)) = Fcoc(k,m)=t Thus, (m',t) is a valid pair.

This can be fixed by encrypting T with another secret key: $F(k_1, CBC-MAC_{k_1}(M))$. This is called <u>ECBC-MAC</u>.

HMAC: S(k,m) = H(k ⊕ opad || H(k ⊕ ipad) || m), where opad and ipad are fixed constants used for padding.
 It is proven to be secure

Digital Signatures

Alice
$$SK \rightarrow Sign \longrightarrow Verity \rightarrow T/F$$

A public-key signature scheme is an efficient algo triplet:
- KeyGen(λ) \rightarrow (pk, sk)
- Sign(sk , m) \rightarrow o
- Verify(pk, m, o) \rightarrow {0, 1}
T the d OCA Sign Last

1 Generale two
$$\lambda$$
-bit primes p and q, compute $N = pq$ and $\varphi(N)$.

2. Choose an integer
$$e \stackrel{\sim}{\leftarrow} \mathbb{Z}_{\phi(N)}$$
 such that $gcd(e, \phi(N)) = 1$ and compute $d = e^{-1} \mod \phi(N)$

This is again homomorphic: Sign (sk, m_1) · Sign (sk, m_2) = $m_1^d \cdot m_2^d \mod N$ = $(m_1 \cdot m_2)^d \mod N$ = Sign (m_1, m_2)

This is not secure against existential forgery. We can gef the signature of their product without a key. To solve this, we can hash m first:

Sign(sk, H(m₁)). Sign(sk, H(m₂)) = H(m₁)^d. H(m₂)^d = $(H(m_1) \cdot H(m_2))^d \neq (H(m_1 m_2))^d$ This is called hash-and-sign and is secure.

Digital Signature Algorithm (DSA)
Heyben (
$$\lambda$$
) \rightarrow (pk, sk)
1. Choose a group 6 of order q with generator g and a
random $x \in \{1, ..., q-1\}$ and compute $X = g^{x}$.
2. Specify a hash function $H: \{0, 1\}^{*} \rightarrow \mathbb{Z}q$
3. Set $pk = (G, q, g, X)$ and $sk = x$
Sign (sk, m) \rightarrow (R,s)
Compute $R = (g^{*} \mod p) \mod q$ and $s = \frac{(H(m) + x \cdot R)}{r} \mod q$
Verify (pk, m, o)
 $R \stackrel{s}{=} (g^{H(m) \cdot s^{-1}} X^{R \cdot s^{-1}} \mod p) \mod q$

Digital Signatures vs. MACs

Digital Signatures:

- simpler distribution
- only sign once
- publicly verifiable (also transferable!)
- Non-repudiation : Author cannot deny signing it

MACs:

- One key for each recipient
- New MAC for each recipient
- Only receiver can verify
- Author can demy having created a MAC for a message