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Chapter 1

Introduction to Vectors and
Matrices

1.1 Vectors

A vector has n dimensions based on the number of rows. A 2-dimensional
vector looks like this:

v =
[
v1
v2

]
v1 is called the first component and v2 the second component (see Figure 1.1).
We differentiate between a column vector and a row vector.

Column vector:

v =


v1
v2
v3
v4


Row vector:

v =
[
v1 v2 v3 v4

]
1.1.1 Operations

We can operate with vectors.

1. Vector addition

The sum of two vectors v and w is calculated by adding each component
of both vectors. Therefore, both vectors have to of the same dimension:

v +w = w+ v =
[
v1 +w1
v2 +w2

]
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v1

v2

u⃗ =
[
ux
uy

]

x

y

Figure 1.1: Placing a 2-dimensional vector v on the 2-dimensional Cartesian
coordinate system, showing its x- and y-components.

2. Scalar multiplication

Multiplying a vector v by a number c, the scalar, is called scalar multipli-
cation of v by c:

cv =
[
cv1
cv2

]
3. Linear combination

Using vector addition and scalar multiplication, we can create linear
combinations. The sum of a vector v multiplied by a scalar c and a vector
w multiplied by scalar d is a linear combination of v and w: c ∗ v + d ∗w

4. Dot product

Definition 1.1 Dot Product

π

The dot product or inner product of two vectors v and w is calcu-
lated as follows: v ·w =

∑n
i=1 viwi = v1w1 + v2w2 + ...vn +wn.

Geometrically, the dot product is a product of the length of w and the
length of the projection p of v on w. Therefore, if the dot product x ·y = 0,
the vectors x and y are orthogonal (x⊥ y).

CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 4



Note 1.1

!

The calculation of the dot product given here only applies if the
basis of both vectors is orthonormal. If it’s not the dot product can
be calculated by matrix multiplication.

Properties:

i x · x ≥ 0

ii x · y = y · x (commutative law)

iii (x + y) · z = x · z + y · z (distributive law)

iv (rx) · y = r(x · y) (associative law)

1.1.2 Properties

1. Vector length

A vector with length 0 (all the components are 0) is called a zero vector
and a vector with length 1 is called a unit vector.

The length or norm of a vector v is given by

||v|| =
√
v · v =

√√
n∑
i=1

v2
i .

Any vector v can be normalized to a unit vector u by dividing v by its
length:

u =
v
||v||

.

2. Vector angle

If the dot product v ·w = 0, the vectors are orthogonal. This means that v
is perpendicular to w and the angle between the two vectors is 90◦.

If v ·w > 0 then the angle is less than 90◦. If v ·w < 0 then the angle is
greater than 90◦.

In general the angle between two vectors v and w can be calculated as
follows:

cosθ =
v ·w
||v|| ∗ ||w||

.

However, there is no normalization needed if v and w are unit vectors.
In this case, cosθ = v · w. How does this work? As explained, the dot
product is in part a projection p of v on w. The projection p, the vector

CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 5



v and the vector u connecting the two form a right triangle. This means
we can use trigonometric functions. The definition of cos is

cos =
Adjacent

Hypotenuse
.

p is the adjacent and v is the hypotenuse.

3. Schwarz inequality

According to the Schwarz inequality, it holds

|v ·w| ≤ ||v|| ∗ ||w||.

Again, let’s look at this equation geometrically. The equation says, the
product of the length projection of v on w and the length of w is less than
the product of the length of v and w. It is obvious that the projection of v
on w is shorter than v itself, therefore, the dot product has to be smaller.
The only exception is if v = w. In this case, the projection of v on w is v,
meaning both sides of the inequality are equal.

4. Triangle inequality

Given two vectors v and w it holds

||v +w|| ≤ ||v||+ ||w||

. If v and w are positive

||v +w|| = ||v||+ ||w||.

1.1.3 Change of coordinates

Within a vector space, every vector v has a unique representation. For example,
lets take a vector v in the vector space V in R

3 with the standard basis I3

Note 1.2 Standard basis

!

The standard basis has all 0 except on the diagonal. That means:

I3 =


1
0
0

 ,

0
1
0

 ,

0
0
1


To calculate the coordinates of v, we look for the coefficients a1 to an that satisfy
the equation

v = a1


1
0
0

+ a2


0
1
0

+ a3


0
0
1

 .
CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 6



These coefficients are the coordinates. Because we used the standard basis,
these coordinates are called standard coordinates. It is clear that the coordi-
nates are dependent on the basis we choose. If we choose the basis 2 ∗ I3, the
coordinates are twice as high. To transfer those non-standard coordinates back
to standard coordinates, we need a transition matrix U :

standard coordinates = U ·non-standard coordinates.

We can also take the inverse of U, U−1 to transfer standard coordinates to non-
standard coordinates.

1.2 Matrices

Example 1.1 Matrix

⋆

By combining multiple vectors v =


1
−1
0

 ,w =


0
1
−1

 ,u =


0
0
1

 we can form

a matrix: 
1 0 0
−1 1 0
0 −1 1


A matrix is characterized by the number of rows (m) and the number of columns
(n). For example, an m×n matrix a over R is an m×n rectangular array of real
numbers. An individual entry in row i and column j is denotes as aij .

The m×n zero matrix 0m,n has all of its entries equal to 0. Adding a zero matrix
to an m×n matrix A is equal to A (0m,n +A = A).

A square matrix has a main diagonal, a superdiagonal (above the main diago-
nal) and a subdiagonal (below the main diagonal).

The n×n identity matrix In has all of its diagonal entries equal to 1 and all other
entries equal to 0. In other words, all aij = 1 when i = j and 0 everywhere else.
What makes an identity matrix special? Multiplying an identity matrix with
an n×n matrix A equals A:

In ·A = A · In = A.

A diagonal matrix is similar to an identity matrix, however, all the diagonal
entries can have any value.

1.2.1 Operations

We can also operate with matrices.

CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 7



1. Matrix addition

The sum of two matrices A and B is calculated by adding each entry of
both matrices. Therefore, both matrices have to be of the same dimen-
sion:

A+B = B+A = aij + bij

2. Scalar multiplication

Multiplying a matrix A by a number c, the scalar, is called scalar multi-
plication of A by c:

cA = aij ∗ c For all i, j

3. Multiplication of a matrix and a vector

The multiplication of an m × n matrix A and a vector x is only defined
if x has n dimensions. The resulting vector b has the dimension m. The
product is calculated as follows: bm = Amn · xn or in full form:

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1
x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

4. Multiplication of matrices

The multiplication of an m × n matrix A with a matrix B is only defined
if B is n × p. In other words, the number of columns of matrix A has to
equal the number of rows of matrix B. The resulting matrix C has the
dimensions m× p. The product is calculated as follows:

cij =
n∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ain + bnj

or in full form:


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

×

b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bn1 bn2 · · · bnp

 =


c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
. . .

...
cm1 cm2 · · · cmp



CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 8



1.2.2 Laws

Matrices satisfy the following laws provided the sums and products are de-
fined:

i A+B = B+A

ii (A+B)C = AC +BC

iii C(A+B) = CA+CB

iv (βA)B = β(AB) = A(βB)

v (AB)C = A(BC)

1.2.3 Properties

1. Transpose of a matrix

Definition 1.2 Transpose of a matrix

π

The transpose of a matrix A, denoted as AT , is obtained by con-
verting the rows of A into the columns of AT one at a time. If A
has order m×n, then AT has order n×m.

Example 1.2 Transpose

⋆

Lets assume

A =
[

1 2 3
4 5 6

]
then the transpose of A is

AT =


1 4
2 5
3 6

 .

2. Rank of a matrix

Definition 1.3 Rank of a matrix

π

The rank (or row rank) of a matrix is the number of nonzero rows
in the matrix after it has been transformed to row-echelon form.

CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 9



1.2.4 Determinant of a matrix

Definition 1.4 Determinant

π

The determinant of a square matrix A is a scalar and denoted as det(A)
or |A|.

The calculation for the determinant is dependent on the size of the matrix.

1. 1× 1 matrices det(A) =
∣∣∣a11

∣∣∣ = a11

2. 2× 2 matrices det(A) =

∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣∣ = a11a22 − a12a21

3. 3×3 matrices det(A) =

∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣∣ = a11a22a33+a12a23a31+a13a21a32−

a13a22a31 − a12a21a33 − a11a23a32

Easy way to remember:
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

+


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

+


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


What does the determinant represent in R

3? When by performing a linear
transformation with m× n matrix A, the vector x increased in length. This in-
crease in length is equal for all vectors in R

3. The determinant tells us by what
amount the length increases. In this example, the det(A) = 6, which means all
vectors are scaled by a factor of 6. However, this not only applies to vectors,
but everything in the field R

3, including planes, areas, ...

//TODO: Slides 10-29 on Determinants

1.2.5 Inverse of a matrix

Definition 1.5 Inverse of a matrix

π

A square matrix A is invertible if there exists a matrix A−1 such that
A−1A = I and AA−1 = I . The inverse for a square matrix is unique.
A rectangular matrix can have a right inverse (AB = I), which is different
from its left inverse (BA = I).
A matrix that is invertible is called nonsingular and a non-invertible
matrix is called singular.

1. Rules for inverse matrices

i If A is nonsingular, then (A−1)−1 = A

CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 10



ii If A and B are nonsingular, then so is AB. The inverse of a product
AB is (AB)−1 = B−1A−1 (inverses come in reverse order). This also
applies to three or more matrices: (ABC)−1 = C−1B−1A−1.

iii If A is nonsingular, then so is AT . Further, (AT )−1 = (A−1)T

2. Properties of Inverses of Triangular Matrices

i The inverse of an upper/lower triangular matrix with nonzero diag-
onal elements is itself upper/lower triangular.

ii If any of diagonal elements of lower or upper triangular matrix is
zero, then this matrix is non-invertible (singular).

iii The inverses of triangular matrices are constructed using row re-
duction, as seen below.

3. Calculating an inverse of a matrix

i using row reduction

We reduce A to the row reduced form. Simultaneously, we apply
the same row operations to the identity matrix In. These operations
transform In to A−1. This means an invertible matrix is a product of
elementary matrices. If a is not invertible, the rank k of the matrix
A is smaller than the number of rows of A.

Example 1.3 Calculating the inverse using row reduction

⋆


3 2 1 1 0 0
4 1 3 0 1 0
2 1 6 0 0 1


r1→

1
3
r1

↓


1 2

3
1
3

1
3 0 0

4 1 3 0 1 0
2 1 6 0 0 1


...

↓


1 0 0 −3

25
11
25

−1
5

0 1 0 18
25

−16
25

1
5

0 0 1 −2
25

−1
25

1
5



CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 11



ii using the determinante

1.2.6 LU Decomposition

with LU decomposition, we can rewrite an n × n matrix A as A = LU (in most
cases). L is the lower triangular matrix, meaning all elements above the main
diagonal are zero. The upper triangular matrix U has all elements below the
main diagonal equal 0.

The factorization is unique, if the elements of the diagonal of U are all equal
to 1:

U =



1 u1,2 u1,3 . . . u1,n
0 1 u2,3 . . . u2,n
0 0 1 . . . u3,n
...

...
...

. . .
...

0 0 0 . . . 1


L =



l1,1 0 0 . . . 0
l2,1 l2,2 0 . . . 0
l3,1 l3,2 l3,3 . . . 0
...

...
...

. . .
...

ln,1 ln,2 ln,3 . . . ln,n


Calculating the LU decomposition using Crout’s reduction algorithm

1.2.7 Eigenvectors and Eigenvalues

When applying a linear transformation with an n×n matrix A on a vector space,
the vectors can change in size and orientation. However, there may be some
non zero vectors v that, after applying the linear transformation, are a scalar
multiple of the original vector. Those non zero vectors v are called eigenvectors
or characteristic vectors. The mathematical definition is Av = λv, where λ ∈ R
and v ∈ R

n. The scalar λ is called the eigenvalue or the characteristic value.
There exist at most n eigenvalues.

The vector(s) v can be calculated using (A−λI)v = 0 (Proof: Av = λv =⇒ Av =
(λI)v =⇒ (A−λI)v = 0). Hence v ∈N (A−λI).

If N (A−λI) , ∅, then the space is called the eigenspace of the matrix A corre-
sponding to the eigenvalue λ.

If N (A−λI) = ∅, the matrix A−λI is singular, therefore, det(A−λI) = 0 (called
the characteristic equation).

1.3 Projections

A projection is a linear transformation that maps a vector onto a subspace. This
means that the projection of a vector will be a vector that lies in the subspace.
To project a vector b, we multiply it with a projection matrix P to give the
projection p.

CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES 12



Example 1.4 Projection

⋆

Say we want to project a vector b =
(
2 3 4

)
onto the xy-plane. To do

this we multiply it with P =


1 0 0
0 1 0
0 0 0

. This gives us p =
(
2 3 0

)
.

To calculate the projection matrix, we first need to find the basis vectors S of
the subspace V . Then, we compute P using this formula: P = (SST ) · (ST S)−1.

However, there is a shortcut for projection a vector v on a vector w: projw v =
v·w
|w|2 w

1.4 Linear Transformation

A matrix is a linear transformation of a given vector space. An easy way to
understand this is to look at a matrix as a collection of vectors. Lets say we have
a vector x =

(
1 1 1

)
, a 3× 3 matrix A, which has 3 independent vectors A =

3 0 0
0 2 0
0 0 1

 and the standard basis for R
3, which is


1 0 0
0 1 0
0 0 1

. When thinking

of a 3 dimensional vector space, like R
3, we always think of the standard basis

(I3). The position of x in the vector space spanned by I3 can be calculated by
taking each entry and multiplying it with the basis. Since we are using In as
our basis, this equals to x. However, if we apply the linear transformation with
A, the standard basis I3 gets multiplied with A. The product is the new basis
for R3. If we now calculate the position of x, we get

(
3 2 1

)
.

There are different types of linear transformations:

1. A scaling transformation scales the space as shown in the example above.

Sv =
(
vx 0
0 vy

)
2. A rotation transformation rotates space. R(θ) =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
. θ is

the angle by which space is rotated. The rotation works by rotating the
basis by θ

If θ is positive, the rotation is counter-clockwise. Otherwise, if θ is neg-
ative, the rotation is clockwise

The axis of rotation is the eigenvector.

3. A shear transformation only transforms one dimension. S =
(
xx xy
yx yy

)
.
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For example, to transform the y-axis S =
(
1 0.4
0 1

)
.

4. A symmetric transformation //TODO

1.4.1 Transformation maps

Such a linear transformation can be denoted as a map T : Rn → R
n. Or more

generally: T : Original Domain → Target Co-Domain. This means, a linear
transformation connects vector spaces, while keeping the structure of the orig-
inal vector space. Let T : U → V . The vector in the equation v = T (u) is called
image of u under T and u is called the pre-image.

The inverse T −1 maps V to U : T −1 : V →U . If U and V are finite-dimensional
vector spaces and a basis is defined for each vector space, then every linear
map T : U → V can be represented by a transformation matrix A. Because A
transforms U to V , A is relative to the basis of U .

A transformation map T : V →W has a kernel ker(T ) and image im(T ).

The im(T ) is defined to be the set {T (v) : v ∈ V }. The basis for im(T ) is the set
{T (v1), . . . ,T (vs)}

The ker(T ) consists of all vectors v ∈ V such that t(v) = 0. That is, ker(T ) = {v ∈
V : T (v) = 0}. The basis can be found by row-reduction of the transformation
map T .

The dim(V ) = n = dim(im(T )) + dim(ker(T )) (Proof)

1.4.2 Transformation matrix

The transformation matrix A transforms any vector in the original basis to a
vector in the new basis. Lets say T : U → V , U = R

n and V = R
m. T can

be represented as a function T (x) = Ax. This transformation matrix A has the
dimensions m × n. A is associated with T with respect to both the standard
basis of Rn and R

m. Because A transforms U to V , A is relative to the basis of
U .

Let e1, . . . ,en be the basis of U . Any vector u with elements u1, . . . ,un can be
represented in U as u = α1e1 + · · · + αnen. To transform u to V we put in u in
T (x):

T (u) = T (α1e1 + · · ·+αnen)

Based on rule (i) and (ii) of linear transformations, we can rewrite this:

T (α1e1 + · · ·+αnen) = α1T (e1) + · · ·+αnT (en)

This means, we are only really interested in the basis, in order to perform a
transformation. Lets say the basis for V is v1 + · · · + vm. Every T (ej ) can be
uniquely represented with v1 + · · ·+ vm:

T (e1) = β11v1 + β21v2 + · · ·+ βm1vm
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T (e2) = β12v1 + β22v2 + · · ·+ βm2vm

...

T (en) = β1nv1 + β2nv2 + · · ·+ βmnvm

A more compact notation is:

T (ej ) =
m∑
i=1

αjivifor1 ≤ j ≤ n

The coefficients αij ∈ K(1 ≤ i ≤m and 1 ≤ j ≤ n) can be represented as an m×n
matrix:

A =


α11 α12 . . . α1n
α21 α22 . . . α2n
...

...
. . .

...
αm1 αm2 . . . αmn+


The calculation for T (ej ) can now be rewritten:

T (e1) = Ae1 =


a11
a12
. . .
a1n


T (e2) = Ae2 =


a21
a22
. . .
a2n


...

T (em) = Aem =


am1
am2
. . .
amn


Example 1.5

1. Example Let the basis vectors of U be u1,u2,u3 be I3 and the basis
of V be v1,v2 be (I2). Let T : U → V . To calculate A we write down
T :

T (u1) = α11v1 +α21v2

T (u2) = α12v1 +α22v2

T (u3) = α13v1 +α23v2
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⋆

Then A is:

A =
(
1 0 0
0 1 0

)
2. Example

However, there is a shorter way to calculate the transformation matrix A. Given
the transformation T : U → V , the basis for U = u1, . . . ,un and the basis of
V = v1, . . .vn. The row-reduced form of v1, . . .vn|L(u1), . . . ,L(un) is (I|A).

1.4.3 Rules for linear transformations

The following rules have to be true for a linear transformation:

i T (u1 + u2) = T (u1) + T (u2)

ii T (αu) = αT (u)

These rules can be combined: T (αu1 + βu2) = αT (u1) + βT (u2)

What follows from this definition (T : U → V ):

i T (0U ) = 0V

ii T (−u) = −T (u)

1.4.4 Isomorphism and endomorphism

If U = V we call T endomorphism or a linear operator.

If the function T (x) is a bijection, the transformation is called isomorphism
(There can be more than one isomorphism for two vector spaces). U and V are
then called isomorphic and share many properties.

Example 1.6

⋆

Let V be a vector space over Kn with the basis v1, . . . ,vn. The linear map
T : Kn→ V is then defined as T (α1, . . . ,α2) = α1v1 + · · ·+αnvn. This is an
isomorphism

Let T : U → V be an isomorphism and u1, . . . ,un be vectors in U .

1. The vectors are linearly independent if and only if T (u1), . . . ,T (un) is lin-
early independent.

2. The vectors span U if and only if T (u1), . . . ,T (un) spans V .

3. The vector are a basis of U if and only if T (u1), . . . ,T (un) is a basis for V
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Chapter 2

Vector Spaces and Subspaces

2.1 Fields

A field is a set of numbers K and two maps K ×K → K , which define addition
and multiplication within that field. Every field must contain 0 and 1 and
satisfy the 8 axioms below.

Example 2.1 Field

⋆

For each number p, define Fp = 0,1,2, ...,p − 1 with p elements, where
addition and multiplication are carried out modulo p.
The smallest such field is F2 because it just contains 0 and 1.

2.1.1 Axioms

Axioms for addition:

A1 α + β = β +α for all α,β ∈ K (commutative law)

A2 (α + β) +γ = α + (β +γ) for all α,β,γ ∈ K (associative law)

A3 α + 0 = 0 +α = α for all α ∈ K

A4 For each element α ∈ K there exists an element −α ∈ K such that α +
(−α) = (−α) +α = 0

Axioms for multiplication:

M1 α · β = β ·α for all α,β ∈ K (commutative law)

M2 (α · β) ·γ = α · (β ·γ) for all α,β,γ ∈ K (associative law)

M3 α · 1 = 1 ·α = α for all α ∈ K
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M4 For each element α ∈ K with a , 0, there exists an element α−1 ∈ K such
that α ·α−1 = α−1 ·α = 1

Axioms for multiplication and addition:

D (α + β) ·γ = α ·γ + β ·γ for all α,β,γ ∈ K (distributive law)

2.1.2 Number systems as fields

Why are the sets R, Q and C more interesting for us than N? In N, A1-A3 and
M1-M3 hold, but A4 and M4 do not. In Z, A1-A4 and M1-M3 hold, but M4
does not. On the other hand, R, Q and C satisfy all axioms and are therefore
fields.

2.2 Vector spaces

A vector space over a field K is a set V together with an element 0 ∈ K and two
maps + : V ×V → V and · : K×V → V , called addition and scalar multiplication.
These maps must satisfy 5 axioms and define u+v ∈ V (u,v ∈ V ) and α·v ∈ V (a ∈
K). If a vector space V is spanned by a finite number of vectors, then it has a
basis. A linear combination of all the vectors of a basis, can describe every
vector in V . Any n linearly independent vectors in an n-dimensional vector
subspace (like R

n) will span that vector space.

//TODO: Extending and reducing linear independence to a spanning set

Elements v ∈ V of a vector space V are called vectors. Elements of the field K
will be called scalars. Both the zero vector and zero scalar are in the V and K.

Matrices are also a vector over a field K (m,n). This can also be denoted as
Mm,n(K)

Example 2.2 Vector space

⋆

Field F: For each prime number p, define Fp = 0,1,2, ...,p − 1 with p
elements, where addition and multiplication are carried out modulo p.
A vector in F8

2 is a byte. The 2 means we only have the numbers 0 and
1, while the 8 means the vector space has 8 dimensions.

2.2.1 axioms

For V to be called a vector space, the following axioms must be satisfied for all
α,β ∈ K and all u,v,w ∈ V .

i Vector addition satisfies these axioms:

A1 u + v = v +u

A2 (u + v) +w = u + (v +w)
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A3 v + 0 = 0 + v = v

A4 There exists −v ∈ V such that v + (−v) = (−v) + v = 0

ii αu + v = αu +αv

iii (α + β)v = αu +αv

iv (αβ)v = α(βv)

v v · 1 = v

From these axioms we can deduce some useful relations:

i α · 0 = 0 for all α ∈ K

ii 0 · v = 0 for all v ∈ V

iii −(αv) = (−α)v = α(−v) for all α ∈ K and v ∈ V

iv if αv = 0, then α = 0 or v = 0

2.2.2 Special vector spaces

The vector space V that consists only of a zero vector satisfies all axioms.

The infinite-dimensional space R
∞) also satisfies all axioms. Its vectors have

infinitely many components, as in u =
(
0 2 1 2 ...

)
. The laws for u+v and

cu stay unchanged.

2.2.3 Product of two vector spaces

//TODO Product of two vector spaces

2.3 Vector Subspaces

Let V be a vector space over the field K . Certain subsets of V have are closed
under addition and scalar multiplication. This means that when adding or
taking scalar multiples of vectors in the subset gives which are again in the
subset. Such a subset is called a subspace. In other words, if v and w are
vectors in a subspace W and c is a scalar in K , then v +w ∈W and cv ∈W . if V
is a finite dimensional vector space, then every subspace W of V is also finite
dimensional. In addition, the dimension of W is not larger than the dimension
of V .

Any vector space V is a subspace of itself. Subspaces other than V are called
proper subspaces. The zero subspace is called the trivial subspace.
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Example 2.3 Vector subspaces

⋆

1. Any line through
(
0 0 0

)
2. Any plane through

(
0 0 0

)
3. The whole space of R3

4. The single vector
(
0 0 0

)
Inside the vector space R

2,2 (or M2,2(R)) there are two subspaces:
1. All upper triangular matrices
2. All diagonal matrices

A vector subspace of a vector space V can be formed by taking the linear com-
bination of the vectors (v1, ...,vn) ∈ V . We say the subspace is spanned by the
vectors v1, ...,vn.

Additionally, a vector subspace V with a spanning set S can have an orthogonal
complement. The orthogonal complement of a subspace contains every vector
in V that is perpendicular to S. This orthogonal subspace is denoted by S⊥ (S
perp). Any vector x that is perpendicular to S is perpendicular to the subspace
V (x⊥ S =⇒ x⊥ V ). Also, (S⊥)⊥ = span(S) and (V ⊥)⊥ = V . S and S⊥ can only
share the zero vector.

2.3.1 4 fundamental subspaces

The four fundamental subspaces of an m×n matrix A are the

1. row space C(AT ) with dim r (r refers to the rank of A)

The row space is spanned by the rows of A. The C in C(AT ) stands for
columns. If we take the columns of the transposed matrix, we get the
rows. The row space is a subspace of $n and is also called a coimage. The
dimension of the row space is denoted as r or rank(A)

2. column space C(A) with dim r

The column space is spanned by the columns of A. It is a subspace of Rm

3. null space N (A) with dim n− r

The null space is the set of solutions for the equation Ax = 0. The null
space meets the row space only at the 0 vector. This represents the trivial
solution for matrix A. The null space is a subspace of Rn and also called
a kernel. The dimension of the null space is called nullity.

The null space is orthogonal and linearly independent to the row space.
But why? For the equation Ax = 0 to be true, the dot product of x and
each row in A has to equal 0 (otherwise the solution of Ax , 0). This
means x is orthogonal to each row in A and, therefore, orthogonal to the
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row space of A. Because of this, the x also has to be linearly independent
to the row space of A.

4. left null space N (AT ) with dim m-r

Similarly to the null space, the left null space is orthogonal to the col-
umn space and only meets the columns space at the 0 vector. The left
null space is the space spanned by the vectors y that satisfy the equa-
tion AT y = 0. The left null space is a subspace of Rm and also called a
cokernel.

The row space and null space a linearly independent and their dimensions add
up to Rn. So, together they span R

n. Same with the column space and left null
space. They are also linearly independent, but their dimensions add up to Rm.
Together they span Rm.

All of this is represented in the following image:

2.3.2 Orthogonal bases and Gram-Schmidt

To understand what an orthogonal basis is, we first need to understand what
an orthogonal basis is. A nonempty set S ∈ V of nonzero vectors is called an
orthogonal set if all vectors in S are mutually orthogonal. That is, the dot
product of any two vectors vk ,vi ∈ S has to be = 0. Additionally, all vectors of
an orthogonal set are linearly independent.

Furthermore, if every vector v ∈ S has a length of 1, the set S is called an
orthonormal set.

There is an easy way to check if a set S is orthogonal. Create a matrix A with
every vector v ∈ S and perform a row reduction. If the resulting matrix is an
identity matrix, the set S is orthogonal.
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To calculate the coordinates of any vector x ∈ V with an orthogonal basis, we
can do the following calculation:

x =
x · v1

v2
1

v1 + · · ·+ x · vn

v2
n

vn

If the basis is orthonormal, the normalization is not needed:

x = (x · v1)v1 + · · ·+ (x · vn)vn

To calculate an orthogonal basis v1,v2, . . . ,vn with a non-orthogonal basis x1,x2, . . . ,xn
for V , we can use the Gram-Schmidt orthogonalization process:

v1 = x1

v2 = x2 −
x2 · v1

v2
1

v1

vn = xn −
n∑
i=2

xi · vi−1

v2
i−1

vi−1

Then v1,v2, . . . ,vn is an orthogonal basis for V .

Properties of the Gram-Schmidt process:

1. The span of v1,v2, . . . ,vn and x1,x2, . . . ,xn is the same.

2. vk is orthogonal to x1,x2, . . . ,xk−1

3. vk = xk −pk , where pk is the orthogonal projection of the vector xk on the
subspace spanned by x1,x2, . . . ,xk−1

4. ||vk || is the distance from xk to the subspace spanned by x1,x2, . . . ,xk−1

Example 2.4

Let x1 =
[
1 2

]
,x2 =

[
−1 0

]
span R

2
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⋆

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x1v1

x2

p

−p
v2

x

y

The calculation can be simplified:

w1 =
x1

||x1||

v2 = x2 − (x2 ·w1)w1

vn = xn − (xn ·w1)w1

Then w1,v2, . . . ,vn is a basis for V , ||w1|| = 1, and w1 is orthogonal to v2, . . . ,vn.

Gram-Schmidt can be used to check linear independence:

The vectors x1, . . . ,xn stay the same, if they are already linearly independent

//TODO
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Chapter 3

Systems of linear equations

A system of linear equations Ax = b has m equations and n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

If b = 0, the system is homogeneous. Otherwise, the system is nonhomoge-
neous.

A system can have 1. no solution, 2. exactly one solution, 3. more than one
solution. If a system has at least one solution, it is consistent. Otherwise, it is
inconsistent. If a solution is x = 0, it is called a trivial solution. Otherwise, it is
a nontrivial solution. A system with no solutions or infinitely many solutions
is singular.

A system Ax = b can also be written as (A|b):
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm


3.1 Elementary operations

All elementary row and column operations are the same. All operations can be
achieved by left multiplying a corresponding elementary matrix (linear trans-
formation).
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R1 Add a multiple of rj to ri (i , j). The elementary matrix is E(n)1
λ,i,j . It is

an identity matrix, which has a non-zero entry λ at the position (i, j).

R2 Interchange two rows. The elementary matrix is E(n)2
i,j . It is an identity

matrix with rows i and j interchanged.

R3 Multiplying a row by a non-zero scalar. The elementary matrix is E(n)3
λ,i .

It is an identity matrix with the position (i, i) replaced by λ.

3.2 Solving linear equations

3.2.1 row reduced form / upper echelon form

In general, to solve a system of linear equations using row reduction, we can
use the following steps:

1. Write the system of equations in augmented matrix form (A|b).

2. Put the matrix in upper-echelon form by performing row operations on
the matrix.

3. Put the matrix in row-reduced form by performing further row opera-
tions on the matrix.

4. Read off the solutions from the row reduced form of the matrix.

Example 3.1

⋆

Given the following equation:

x+ y = 2

3x − y = 5

We can solve this equation using row-reduction like this:

[
1 1 2
3 −1 5

]
[

1 1 2
0 −4 −1

]
[

1 1 2
0 1 1/4

]
= Upper-echelon form[

1 0 7/4
0 1 1/4

]
= Row-reduced form

⇒ (x,y) = (
7
4
,
1
4

)
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3.2.2 Solving using the inverse

The equation system Ax = b has a unique solution if and only if A is nonsingu-
lar (=invertible).

The homogeneous system of equations Ax = 0 has a non-zero solution if and
only if A is singular. Otherwise, it has only a trivial solution.

To solve an equation system using A−1, we can use the following equation:

x = bA−1 = A−1b

3.2.3 Solving using LU Decomposition

To solve the system of equations using LU decomposition, we can first rear-
range the original equation as LUx = b, where x is the vector of variables
x1,x2, . . . ,xn. Since L is a lower triangular matrix, we can solve for the vector y
in the equation Ly = b by performing row-reduction. Once we have solved for
y, we can then solve for the vector x in the equation Ux = y by again perform-
ing row-reduction.
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